
Game programming environments for musical interactions

V.J. Manzo, PhD
Worcester Polytechnic Institute

100 Institute Road
Worcester, MA 01609

+1 (508) 831-5246
vj@wpi.edu

Dan Manzo
Worcester Polytechnic Institute

100 Institute Road
Worcester, MA 01609

+1 (508) 831-5246
dvmanzo@wpi.edu

ABSTRACT
Game development programming environments make use of
many of the same sound generation technologies that music
technology applications use. There are mechanics for playing,
organizing, listening, recording, and manipulating sounds, all of
which can be delivered in a controlled environment. By
developing the environment in which players interact with the
mechanics of gameplay, a researcher can structure the order in
which events occur and to teach musical concepts informally.
Such informal learning can occur through exploration of the game
world with accessible controls and limited written or verbal
communication.

There are many music-oriented video games in existence. This
article explores the potential and rationale for using robust
programming environments like Construct 2 and Unity 3D for
individuals who lack formal programming skills to develop video
games that facilitate their musical objectives; performance,
composition, education, research or other.

Keywords
Interactive media, music systems, gaming environments, music
programming, music technology, music education, informal music
learning

BACKGROUND

An interactive music system is a hardware or software
configuration that allows an individual to accomplish a musical
task, typically in real-time, through some interaction. Though
commonly associated with composition and performance, the
tasks associated with interactive music systems can include
analysis, instruction, assessment, rehearsal, research, therapy,
synthesis, and more. These systems typically have some set of
controls, hardware or software, such as switches, keys, buttons,
and sensors by which musical elements like harmony, rhythm,
dynamics, and timbre can be manipulated in real-time through
user interaction.”

Electronic musical instruments can then be thought of in terms of
having controls over some musical elements. A variable is
something that changes. A control is something that changes a
variable. In music, there are many variables, such as pitch,
dynamics, and timbre that change as a result of the instrument’s
control device, also known as a control interface.

The control interface for a violin is typically a bow. Without
buttons, knobs, or sensors, the bow is capable of controlling
numerous variables within a single, simple, interface. For
example, if you angle the bow differently as it hits the strings, the
timbre will change; apply more pressure and the dynamics will
change.

The Buchla 200e, shown in Figure 1, for example, is a modular
synthesizer also capable of controlling numerous musical
variables. In fact, the Buchla is capable of creating more diverse
timbres than the violin. However, controlling musical variables on
the Buchla, with the control interface of knobs, buttons, and patch
cables, involves more gestures than the violinist and the bow.

Figure 1. The Buchla 200e modular synthesizer

For the intent of performance, some control interfaces are more
accessible than others for real-time use. With a computer, you can
arguably achieve any sound imaginable if you tweak the right
numbers and press the right buttons. It is a well-designed control
interface, however, that allows a performer to readily control
musical variables in a less cumbersome way than clicking on
menu items from pull-down lists and checking boxes.

Throughout history, people have created new musical instruments,
and the instruments created generally reflect the technological
resources available at the time. Early primitive instruments had
few moving parts, if any. The Industrial Revolution made way for
the modern piano to evolve using steel and iron. In the
Information Age, it stands to reason that newly created
instruments may largely involve computers and electronics.

New Interfaces for Musical Expression or NIME, is an
international conference in which researchers and musicians share

their knowledge of new instruments and interface design. Session
topics include controllers for performers of any skill level as well
as the pedagogical implications of using these controllers.

Tod Machover, of the Hyperinstruments group (Machover, et al.,
1986) states, "Traditional instruments are hard to play. It takes a
long time to [acquire] physical skills which aren't necessarily the
essential qualities of making music. It takes years just to get good
tone quality on a violin or to play in tune. If we could find a way
to allow people to spend the same amount of concentration and
effort on listening and thinking and evaluating the difference
between things and thinking about how to communicate musical
ideas to somebody else, how to make music with somebody else,
it would be a great advantage. Not only would the general level of
musical creativity go up, but you'd have a much more aware,
educated, sensitive, listening, and participatory public.” (Oteri,
1999).

With practice, an individual can control most variables of an
instrument well and at very fast speeds. However, the initial
performance accessibility of an instrument or control interface has
definite implications for its use by individuals as a musical
instrument—in particular, those individuals who lack formal
musical training and those who have physical or mental
impairments.

In computer science, the term “mapping” is used to describe the
correspondence of one set of data with another set. The potential
mappings of musical variables to software controls has been the
subject of recent experimental research (Couturier, Kessous, &
Verfaille, 2002; Goudeseune, 2002; Levitin, McAdams, &
Adams, 2002). Hunt and Wanderly (2002) conducted studies in
which participants performed music making tasks using four
control interfaces exemplifying two mapping types: one-to-one
and many-to-one. One-to-one mapping types allow single musical
variables to be controlled by a single controls mechanism of an
interactive system. A many-to-one map allows numerous musical
variables to be controlled by a single controls mechanism in an
interactive system; more similar to the example of a violin bow
controlling numerous musical variables as described earlier. In
this research, the interfaces with many-to-one mappings were
more engaging for subjects during the musical activities, yet both
types of interfaces allowed subjects to perform the required tasks.

Adaptive musical instruments can provide scaffolding by which
disabled and special needs populations acquire musicianship
skills. The instruments themselves are created with accessibility in
mind for a specific purpose, such as to play chords or percussive
sounds, with a specific individual or group in mind with which the
instrument will help overcome some limitation, perhaps physical
or mental, on the part of the performer. Adaptive instruments can
be acoustic or electronic in design and Crowe (2004) has reviewed
the literature of electronic adaptive instruments used to assist in
music making. Recent advances in technology have helped many
new adaptive instrument projects to form including Skoog
(Schogler, 2010), AUMI (Pask, 2007), My Breath My Music
Foundation (Wel, 2011), and EAMIR (Manzo, 2007).

The Interactive Music Technology Curriculum Project (Manzo &
Dammers, 2010), or IMTCP, was a study in which students
learned to compose and perform informally using non-traditional
software-based instruments. Musical concepts and compositional
and performance techniques were explained and demonstrated to
non-traditional music students and students who were not
involved in their school’s music program through the use of
software-based musical systems in an informal manner similar to

that of Green (2002, 2008). The development of such systems
may be accomplished using game development environments as
these also allow music and sound variables to be mapped and
manipulated with accessible controls.

In the game Super Mario Brothers (1985), the controls for the
main character allow him to jump and move forward or backward.
When the game begins, there is no explanation given to describe
the gameplay or the mechanics of the controls; players learn the
basic gameplay informally through interactions within the
environment.

Figure 2. Character cannot avoid enemy without an action.

In Figure 2, we see that an approaching enemy encroaches upon
the main character. If the player does not explore the controls
presented to him on the game controller, the enemy will touch the
character and the level will restart.

Figure 3. Main character jumps over the enemy.

Exploration of the game controls leads the player to learn that he
can cause the main character to jump. Besides running, this is the
only action that main character can make in this game. As the
enemy approaches, the player causes the main character to jump.
The environment within the game is ordered so that jumping over

the enemy simultaneously, and inadvertently, hits the question
mark box above the enemy. This results in the character being
rewarded with one coin. Through this design, the player
informally learns that hitting boxes yield positive rewards and
jumping over the enemy is necessary. Informal instructional
techniques are possible with thoughtful level design.

DEVELOPMENT ENVIRONMENTS

Lack of formal programming skills can be a hindrance to music
researchers who seek to develop rich music-oriented tools.
However, videogame programming environments already contain
tools and frameworks for generating and manipulating audio since
these are generally a major component of videogame design. As
these environments, and the video game development profession,
have grown in popularity through the years, new development
architectures have emerged that facilitate game development with
minimal programming skills. Game development environments
also allow developers to deploy their games to multiple devices
and platforms such as desktop computers, browsers (HTML5),
and mobile devices.

Construct 2
One such development environment is the PC-based application
Construct 2 developed by Scirra. It is free for non-commercial
use.

Figure 4. Construct 2 main layout showing assets

As shown in Figure 4, Construct 2 allows you to drag and drop
images, audio, and other assets onto a blank canvas called the
Layout. For each asset in this game world, a number of
characteristics can be defined. Is it a solid? Is it heavy? Is it
visible? As the Layout is built, the game may be previewed within
a web browser. This simple game is used to allow the end-user to
click on game characters to play back pitched sounds.

The Event Sheet presents a simplified programming approach. As
shown in Figure 5, the Event Sheet allows the developer to use
conditional statements to define the rules of the game world. Each
asset or control mechanism may be used to complete these
statements. Construct 2 asks a number of questions in order to
complete this task.

Figure 5. Construct 2 event-based programming sheet

As shown in Figure 5, the developer has selected the mouse as the
control to be defined. Construct 2 then prompts the developer with
actions germane to the mouse such as “when left button is down”
when left button is up” and so on. The prompts continue allowing
the developer to select objects that are changed by the initial
action. This type of event-based programming may be useful to
non-programmers because there is no scripting syntax to learn.
There are only logic statements that the developer must think
through.

A demonstration level is available (see Discussion section) that
shows how audio clips have been assigned to two characters.
When the mouse clicks on a certain area of the platform, it plays
the sound of each character standing on that area. As shown in
Figure 6, two characters are stacked on top of each other. The
end-user of this game would click on the platform and hear the
interval of a perfect fifth performed; one note derived from each
of the characters.

Figure 6. Note-making characters are stacked as pitches

Unity 3D
Unity 3D is another popular game development environment. It is
free for non-commercial use and available for Mac and PC
platforms. Unlike Construct 2, Unity 3D is useful for building
three-dimensional game environments with support for two-
dimensional worlds as well.

Like Construct 2, Unity 3D uses a drag and drop approach to
building the gaming world, though experience with Javascript or

C# programming, even a superficial understanding, will allow for
more sophisticated games to be created. Still, assets like
characters, camera views, props, sound sources, and more can
simply be dragged into the game world and repositioned. As
shown in Figure 7, a Unity use may add geometric shapes and
then assign textured graphic patterns to them. The environment
pictured was made from a single three-dimension object with an
image of a grassy texture applied to it. The sky is also an image.
The developer may add a light source to the world, which will be
perceived by the end-user as a sun. Unity allows for control over
the physics of the world you create. This may be used to create an
environment in which sound exploration is possible.

Figure 7. Basic Unity 3D terrain showing shapes with textures

As one develops in Unity, they may preview the virtual world
from within the development environment. In this game, a simple
hill, a pond, and trees have been added using Unity’s built-in
models. However, models by animators and artists are readily
available online, and can be imported into Unity with ease.

A demonstration level is available (see Discussion section) as
shown in Figure 8. The sound of flowing water has been dragged
onto the model of the pond. Unity automatically applies the
physics of our world to this gaming environment, so as the game
character approaches the pond, the sound of the water increases
slowly in volume, simulating the way one would perceive these
sounds in real life.

Figure 7. First-person character explores the environment

Such an environment could be used for developing interactive
listening environments, where the end-user is expected to detect a
timbre sound from among others, or to explore a virtual world
using listening skills to identify a specific sound. An expanded
Unity 3D tutorial is included in Appendix A.

DISCUSSION
Gaming development programming environments allow for a
convergence of multimedia elements within a single environment.
This articles mentions several game programming environments
and focuses on two specifically, noting how they may be used to
create rich, immersive, interactive music systems that supported
the composition and performance efforts of non-musicians.
Research into the efficacy of such systems to support
musicianship stems from prior interactive music projects that
involved the development and use of software applications
designed to support musical creativity by musicians and non-
musicians.

There are implications for the use of such systems, particularly by
programming novices, in university music classes. Games similar
to those mentioned in this paper can be constructed similarly yet
modified in terms of their objectives, musical results and rewards.
Concepts of theory and composition can be demonstrated and
explained through expansion on the Construct 2 demonstration.
Similarly, aspects of critical listening and timbral recognition can
be demonstrated and explained by expanding the Unity 3D
demonstration. The gaming environments themselves are intuitive
tools that can provide an accessible development interface for
educators and researcher, and facilitate informal music learning
opportunities for students. The use of gaming systems for such
applications may be useful to individuals with an interest in using
multimedia tools to create interactive music systems that allow
end-users to compose and perform through software.

Construct 2 and Unity 3D are available for download from
www.scirra.com and www.unity3d.com respectively. The
demonstration levels created for this article may be downloaded
from www.vjmanzo.com/demos/game_devs/.

BIOGRAPHIES
V.J. Manzo (PhD Temple University, M.M. New York
University) is Assistant Professor of Music Technology and
Cognition at Worcester Polytechnic Institute (WPI). He is a
composer and guitarist with research interests in theory and
composition, artificial intelligence, interactive music systems, and
music cognition. V.J. is the Oxford University Press author of the
book MAX/MSP/Jitter for Music (2011) on developing software-
based interactive music systems for composition, performance,
instruction, and research.
Dan Manzo (BA New Jersey Institute of Technology, MS
candidate at Worcester Polytechnic Institute) is a programmer,
pedagogue, and musician with interests in web applications,
interactive media & gaming, information technology education,
and multimedia performance. He is the founder of Knockout
Media and has authored numerous projects in these genres.

 REFERENCES

[1] Arfib, D., Couturier J.M., Kessous L., & Verfaille V. (2002).
Strategies of mapping between gesture data and synthesis
model parameters using perceptual spaces. Organised Sound:
Cambridge University Press, 7(2) 127-144.

[2] Crowe, B. J. (2004, Winter). Implications of technology in
music therapy practice and research for music therapy
education: A review of literature. Journal of Music Therapy,
41(4), 282-320.

[3] Elliott, D. (1995). Music matters: A new philosophy of music
education. New York: Oxford University Press.

[4] Goudeseune, C. (2002). Interpolated mappings for musical
instruments. Organised Sound: Cambridge University Press,
7(2) 85-96.

[5] Green, L. (2002). How popular musicians learn. Aldershot,
England: Ashgate Publishing Limited.

[6] Green, L. (2008). Music, informal learning and the school: A
new classroom pedagogy. Surrey, England: Ashgate
Publishing Limited.

[7] Hunt, A. & Wanderly, M. (2002). Mapping performer
parameters to synthesis engines. Organised Sound:
Cambridge University Press, 7(2) 97-108.

[8] Levitin D. J., McAdams, S., & Adams, R. (2002). Control
parameters for musical instruments: a foundation for new

mappings of gesture to sound. Organised Sound: Cambridge
University Press, 7(2) 171-189.

[9] Oteri, F. J. (Interview with Todd Machover). (1999).
Technology and the future of music. Retrieved May 25,
2011, from NewMusicBox: http://www.newmusicbox.org

[10] Manzo, V. J., & Dammers, R. (2010, August). Interactive
music technology curriculum project (IMTCP). Retrieved
from http://www.imtcp.org

[11] Manzo, V. (2007, Winter). EAMIR [The electro-acoustic
musically interactive room]. Retrieved from
http://www.eamir.org

[12] Pask, A. (Interviewer) & Oliveros, P. (Interviewee). (2007).
The adaptive use instruments project. Retrieved July 11,
2011, from Cycling '74:
http://cycling74.com/2007/12/07/the-adaptive-use-
instruments-project/

[13] Schogler, B. (2010). Skoog music. Retrieved Oct. 24, 2011,
from Http://www.skoogmusic.com:
Http://www.skoogmusic.com

[14] Super Mario Brothers [video game]. (1985). Tokyo, Japan:
Nintendo EAD

[15] Wel, R. V. D. (2011). . Retrieved July 5, 2011, from My
Breathe My Music Foundation:
http://www.mybreathmymusic.com

APPENDIX A

Unity 3D Expanded Tutorial

Below is an introductory step-by-step tutorial for creating an audio project in Unity 3D. Download and
install Unity 3D for free from www.unity3d.com.

• Open up Unity3D and select the tab “Create New Project”
o Select a location to save the files
o Import any additional packages that you would like to use

! For this example, we will use the Character Controller, Water, and Light Flare
packages

• Once the packages load, we are brought to a blank scene

• First, let’s make a terrain for our character to walk on. We can achieve this by going to the
Terrain menu at the top and selecting Create Terrain

• Next, let’s dress our terrain up and make it look a little nicer. To do this, we will go to the terrain
options on the inspector panel.

o Using the paint option, we’ll add a base texture for our terrain. In this example, we’ll use
the Grass (Hill) texture

• Now, that we have some land to walk around on. We’ll add our character. In this example, we’ll
use Unity’s First-Person Controller prefab to get us started.

o Go into Assets -> Standard Assets -> Character Controllers
! Grab the First-Person Controller object and drag it onto the terrain where you

would like the character to start
! (NOTE: the controller may be placed underneath the map depending on where

your camera position is. Use the inspector to change the XYZ position to the
desired position.)

• Great! Now, it’ll be a little dark on the map for our character so let’s add a sun and sky to our
level. Go to the GameObject menu at the top -> Create Other -> Directional Light (NOTE: the
directional light may be placed underneath the map depending on where your camera position is.
Use the inspector to change the XYZ position to the desired position.)

• For a more realistic look, we’ll add a sun flare to our directional light “Flare” option in the
inspector.

• For our sky, go to Edit -> Render Settings and change our “Skybox Material” in the inspector.
Let’s use the Overcast 1 texture.

• Okay, it’s starting to look like a good level. Let’s make a hill that our character can walk up to
and listen to the water. In the terrain inspector, let’s change the height of a patch of land.

o Click the mountain icon with the two arrows pointing inward
o Select your desired brush and settings and begin to change up your terrain

! The current height of the terrain is at 0, but you can always sample the current
height of a particular terrain by HOLDING SHIFT and clicking an area

• As you can see, I made a groove for the water to go into and even a small walkway to the right of
the hill. Let’s add another texture to the terrain and paint a distinct walkway for our character to
walk up to back in the paint option of the terrain inspector.

• I placed our character controller at the foot of the path so that he won’t have to walk too far to
get to the hill

• Now, let’s add some water by going to Assets -> Standard Assets -> Water (Basic)
o For this example, we’ll use the Daylight Simple Water so just drag it onto the desired

location. I chose right in the center of our hill groove

• As you can see, it doesn’t look very good. It’s because it is at the same level as the hill. Let’s
change the XYZ position coordinates AND XYZ SCALE it so it fits our groove better.

• Much better! Now, the last thing we need to do is set up our audio clip so that when our
character walks by he can hear the sound of water. I found my audio clip on freesound.org, but
any clip will do.

o You can add a clip by simply dragging it into your assets folder

• Now that our audio clip is in our assets folder, simply drag it onto the water object. It
automatically adds the clip to the center of the audio object and we can adjust the settings
depending on our preferences

o I used the linear roll-off option so that the volume increases as our character gets closer to
the audio source

• As you test it and walk near the source, you will see the Listener object that is attached to our
Character show up

• We’re finished! Now when we press the play button on top, we can walk up our hill and hear the
audio clip as we get closer to the water!!

